

Distr.: General 4 July 2025

English only

Report on the simplified review of the national inventory report of Australia submitted in 2025

Summary

This report presents the results of the simplified review of the 2025 national inventory report of Australia, conducted by the secretariat in accordance with the modalities, procedures and guidelines for the transparency framework for action and support referred to in Article 13 of the Paris Agreement.

Abbreviations and acronyms

 CH_4 methane CO_2 carbon dioxide

ETF enhanced transparency framework under the Paris Agreement

GHG greenhouse gas
HFC hydrofluorocarbon
IE included elsewhere
IEF implied emission factor

LULUCF land use, land-use change and forestry

MPGs modalities, procedures and guidelines for the transparency framework for

action and support referred to in Article 13 of the Paris Agreement

 $\begin{array}{ccc} N & & \text{nitrogen} \\ N_2O & & \text{nitrous oxide} \\ NA & & \text{not applicable} \\ NE & & \text{not estimated} \\ NF_3 & & \text{nitrogen trifluoride} \\ NIR & & \text{national inventory report} \end{array}$

NO not occurring PFC perfluorocarbon

I. Introduction

- 1. This report covers the simplified review of the NIR of Australia submitted in 2025. The review was conducted by the secretariat in accordance with the MPGs,¹ particularly chapter VII thereof, and the simplified review procedures.²
- 2. On 3 June 2025 a draft version of this report was transmitted to the Government of Australia, which provided comments on individual findings on 30 June 2025 that were addressed by the secretariat and incorporated, as appropriate, in this final version of the report.³ In addition, Australia provided general comments on the report (see chap. II.B below).
- 3. The secretariat conducted the simplified review of Australia's NIR, which involved an initial assessment of completeness and consistency with the MPGs.⁴
- 4. The findings of the initial assessment, presented in the annex, are the result of automated checks and do not necessarily indicate issues of completeness or consistency of the Party's reporting with the MPGs.
- 5. This report, including the findings listed in the annex and any comments provided by the Party (see para. 2 above), will be made available to and considered by the technical expert review team as part of the subsequent technical expert review of Australia's NIR.⁵

II. Initial assessment of completeness and consistency with the modalities, procedures and guidelines

A. Summary of findings

6. The table below provides a summary of the findings of the initial assessment by the secretariat. Tables I.1–I.7 list the findings and include detailed information on each one.

Summary of the initial assessment

Area of review	Description	Assessment
Dates of submission	2025 submission: CRTs, 30 May 2025	
	2024 submission: CRTs, 12 April 2024	
Recalculations	Recalculations that have changed estimated total GHG emissions or removals (excluding LULUCF) by more than 2 per cent for categories or subcategories above the threshold of significance (263.58 kt CO ₂ eq for 2023) ^a	
	Recalculations for 2005 (the reference year for the Party's nationally determined contribution) and 2022 since the previous submission	See table I.1
Completeness	Detection of notation key "NE", or of missing gases or sectors in CRT 10 emission trends summary	See table I.2
Notation keys	Changes in notation keys reported for 2005 and 2022 since the previous submission	See table I.3
Sectoral and reference approaches	Difference in estimated energy consumption or CO ₂ emissions, by fuel type, of more than 5 per cent between the reference and sectoral approaches for the latest reported year (2023)	No findings for this area
Time-series consistency	The time series of emissions is assessed by calculating inter- annual changes for each category and gas and converting them to CO ₂ eq. Inter-annual changes exceeding the significance	See table I.5

¹ Decision 18/CMA.1, annex.

² Contained in paras. 15–19 of the conclusions and recommendations from the 2023 joint meeting of lead reviewers, available at https://unfccc.int/documents/627213.

³ As per para. 163 of the MPGs.

⁴ As per para. 155 of the MPGs.

⁵ As per para. 155 of the MPGs.

Area of review	Description	Assessment
	threshold are evaluated using the z-score method, b where outliers are identified as values exceeding a z-score of 3, based on the statistical distribution of the full time series	
IEFs	Comparison of IEFs reported for any significant subcategories under key categories with the range of IEFs reported by developed country Parties for the latest inventory year (2023) in their 2025 submission ^c	See table I.6
Key categories	New key categories identified since the previous submission for level (latest year) and trend	See table I.7
Previous areas of improvement	Status of implementation of previous areas of improvement identified in the latest report on the technical expert review of the Party's biennial transparency report	NA^d

 $^{^{\}alpha}$ Threshold calculated by the secretariat as 0.05 per cent of the national total GHG emissions for 2023, excluding LULUCF, or 500 kt CO₂ eq, whichever is lower (see para. 32 of the MPGs).

B. Comments of the Party on the initial assessment

7. The Party provided general comments, 6 which are reported in the box below.

Australia welcomes the opportunity to provide general comments on the simplified review report. These comments are intended to assist the technical expert review team's consideration of the report's findings. They are also intended to help the broader public understand how the findings are influenced by the transition to the Enhanced Transparency Framework (ETF) of the Paris Agreement.

The simplified review process involves a comparison of Parties' national inventory submissions in 2024 and 2025, conducted via automated checks. In 2024, Australia was the first country to submit a complete national inventory document and CRTs. At that time the ETF reporting tool for generating CRT was not functional. To complete its 2024 CRT submission, Australia manually entered all data directly into the CRT templates available from the Secretariat's website (version 2.80, updated with version 2.83 for energy, waste and agriculture). In contrast, Australia's 2025 submission CRT were generated via the ETF reporting tool as it was functional by that time.

As the simplified review report is a product of automated checks, it could not account for differences between the 2024 and 2025 CRT that related directly to how they were generated. This has resulted in findings that reflect differences in CRT generation approach rather than inventory discrepancies. Table I.3 on changes in notation keys contains the largest number of such findings (examples include IDs I.3.1–I.3.3, I.3.7–I.3.10, I.3.45–I.3.52). These findings do not reflect inventory discrepancies, rather they reflect that the ETF reporting tool automatically aggregated subcategory notation keys in the 2025 CRT, whereas the 2024 CRT subcategory notation keys were not automatically aggregated as they were produced manually.

Australia observes that, in the absence of material changes to the ETF reporting tool business rules for generating CRTs, such issues should largely be avoided in the future. Should material changes be planned, Australia suggests that the implications for simplified reviews be considered.

Australia thanks the secretariat for its ongoing efforts to improve all systems underpinning the ETF to promote mutual trust, confidence and effective implementation of the Paris Agreement.

^b Statistical measure that indicates how many standard deviations a data point is from the mean.

category.

^d As at the time of publication of this report, information on status of implementation of previous areas of improvement was not yet available.

⁶ The comments provided by Australia are presented verbatim.

Annex

Findings of the initial assessment of Australia's 2025 national inventory report

Tables I.1–I.7 detail the findings of the initial assessment by the secretariat of the Party's NIR.

Table I.1 **Findings on recalculations**

					Estimate in latest	Estimate in previous			
				Inventory	submission	submission			Difference (kt
ID#	Category	CRT	Gas	year	(2025)	(2024)	Difference Unit	Difference (%)	$CO_2 eq)$
I.1.1.	1.A.1.c. Manufacture of solid fuels and other energy industries	Table1	CO ₂	2005	12 952.99	14 088.99	−1 136.00 kt	-8.1	-1 136.00
I.1.2.	1.A.3.c. Railways	Table1	N_2O	2022	0.03	1.55	−1.52 kt	-98.2	-403.15
I.1.3.	1.B.2.c. Venting and flaring	Table1	CH ₄	2022	81.94	63.06	18.88 kt	29.9	528.62
I.1.4.	1.D.3. CO ₂ emissions from biomass	Table1	CO_2	2022	17 549.44	16 931.33	618.11 kt	3.7	618.11
I.1.5.	1.D.4.a. For domestic storage	Table1	CO_2	2022	-1 646.49	1 646.49	−3 292.99 kt	-200.0	-3 292.99
I.1.6.	3.A.1.a. Other	Table3	CH ₄	2005	1 676.69	1 602.78	73.91 kt	4.6	2 069.57
I.1.7.	3.B.1.a. Other	Table3	CH ₄	2005	168.28	158.62	9.66 kt	6.1	270.42
I.1.8.	3.D.2. Indirect N ₂ O emissions from managed soils	Table3	N_2O	2005	8.43	10.90	-2.47 kt	-22.6	-653.55
I.1.9.	3.A.1.a. Other	Table3	CH ₄	2022	1 526.53	1 446.98	79.54 kt	5.5	2 227.23
I.1.10.	3.B.1.a. Other	Table3	CH ₄	2022	152.80	141.20	11.61 kt	8.2	325.03
I.1.11.	3.D.1.a. Inorganic N fertilizers	Table3	N_2O	2022	12.80	11.65	1.15 kt	9.8	303.83
I.1.12.	3.D.2. Indirect N ₂ O emissions from managed soils	Table3	N_2O	2022	8.55	11.41	-2.86 kt	-25.1	-758.62
I.1.13.	4.A.1. Forest land remaining forest land	Table4	CH ₄	2005	268.99	236.55	32.43 kt	13.7	908.14
I.1.14.	4.C.1. Grassland remaining grassland	Table4	Net CO ₂ emissions/removals	2005	7 163.68	7 574.47	–410.79 kt CO ₂ eq	-5.4	-410.79
I.1.15.	4.C.1. Grassland remaining grassland	Table4	CH ₄	2005	309.00	251.51	57.48 kt	22.9	1 609.55
I.1.16.	4.D.2. Land converted to wetlands	Table4	Net CO ₂ emissions/removals	2005	2 288.05	148.61	2 139.43 kt CO ₂ eq	1 439.6	2 139.43
I.1.17.	4.E.2. Land converted to settlements	Table4	Net CO ₂ emissions/removals	2005	2 946.26	5 085.69	−2 139.43 kt CO ₂ eq	-42.1	-2 139.43
I.1.18.	4.A.1. Forest land remaining forest land	Table4	Net CO ₂ emissions/removals	2022	-26 864.88	-21 835.13	−5 029.76 kt CO ₂ eq	-23.0	-5 029.76
I.1.19.	4.A.1. Forest land remaining forest land	Table4	CH ₄	2022	242.73	206.05	36.68 kt	17.8	1 027.14

					Estimate in	Estimate in			
					latest	previous			
				Inventory	submission	submission			Difference (kt
ID#	Category	CRT	Gas	year	(2025)	(2024)	Difference Unit	Difference (%)	$CO_2 eq)$
I.1.20.	4.B.1. Cropland remaining cropland	Table4	Net CO ₂	2022	-10 069.03	-11 729.72	1 660.69 kt CO ₂ eq	14.2	1 660.69
			emissions/removals						
I.1.21.	4.C.1. Grassland remaining grassland	Table4	Net CO ₂	2022	-18998.24	-23 137.09	4 138.85 kt CO ₂ eq	17.9	4 138.85
			emissions/removals						
I.1.22.	4.C.1. Grassland remaining grassland	Table4	CH_4	2022	253.21	177.48	75.73 kt	42.7	2 120.44
I.1.23.	4.C.1. Grassland remaining grassland	Table4	N_2O	2022	7.27	5.39	1.88 kt	34.9	498.67
I.1.24.	4.D.2. Land converted to wetlands	Table4	Net CO ₂	2022	2 576.77	5.11	2 571.66 kt CO ₂ eq	50 318.7	2 571.66
			emissions/removals						
I.1.25.	4.E.2. Land converted to settlements	Table4	Net CO ₂	2022	-741.91	1 829.75	−2 571.66 kt CO ₂ eq	-140.5	-2571.66
			emissions/removals						

Table I.2 **Findings on completeness**

				Inventory	
ID#	Sector, category or gas	CRT	Gas	year	Notation key Finding type
I.2.1.	1.B.1.b. Fuel transformation	Table1	CH ₄	2005	IE, NA, NE, NO Reporting of "NE" detected
I.2.2.	1.B.1.b. Fuel transformation	Table1	Total GHG emissions	2005	IE, NA, NE, NO Reporting of "NE" detected
I.2.3.	1.D.2. Multilateral operations	Table1	CO_2	2005	NE Reporting of "NE" detected
I.2.4.	1.D.2. Multilateral operations	Table1	CH ₄	2005	NE Reporting of "NE" detected
I.2.5.	1.D.2. Multilateral operations	Table1	N_2O	2005	NE Reporting of "NE" detected
I.2.6.	1.D.2. Multilateral operations	Table1	Total GHG emissions	2005	NE Reporting of "NE" detected
I.2.7.	1.B.1.b. Fuel transformation	Table1	CH ₄	2023	IE, NA, NE, NO Reporting of "NE" detected
I.2.8.	1.B.1.b. Fuel transformation	Table1	Total GHG emissions	2023	IE, NA, NE, NO Reporting of "NE" detected
I.2.9.	1.D.2. Multilateral operations	Table1	CO_2	2023	NE Reporting of "NE" detected
I.2.10.	1.D.2. Multilateral operations	Table1	CH ₄	2023	NE Reporting of "NE" detected
I.2.11.	1.D.2. Multilateral operations	Table1	N_2O	2023	NE Reporting of "NE" detected
I.2.12.	1.D.2. Multilateral operations	Table1	Total GHG emissions	2023	NE Reporting of "NE" detected
I.2.13.	2.D.2. Paraffin wax use	Table2(I)	CO_2	2005	NE Reporting of "NE" detected
I.2.14.	2.D.2. Paraffin wax use	Table2(I)	Total GHG emissions	2005	NA, NE Reporting of "NE" detected
I.2.15.	2.D.3. Other	Table2(I)	CO_2	2005	NA, NE, NO Reporting of "NE" detected
I.2.16.	2.D.3. Other	Table2(I)	Total GHG emissions	2005	NA, NE, NO Reporting of "NE" detected
I.2.17.	2.D.2. Paraffin wax use	Table2(I)	CO_2	2023	NE Reporting of "NE" detected
I.2.18.	2.D.2. Paraffin wax use	Table2(I)	Total GHG emissions	2023	NA, NE Reporting of "NE" detected
I.2.19.	2.D.3. Other	Table2(I)	CO_2	2023	NA, NE, NO Reporting of "NE" detected

				Inventory	
ID#	Sector, category or gas	CRT	Gas	year	Notation key Finding type
I.2.20.	2.D.3. Other	Table2(I)	Total GHG emissions	2023	NA, NE, NO Reporting of "NE" detected
I.2.21.	3.I. Other carbon-containing fertilizers	Table3	CO_2	2005	NE Reporting of "NE" detected
I.2.22.	3.I. Other carbon-containing fertilizers	Table3	Total GHG emissions	2005	NE Reporting of "NE" detected
I.2.23.	3.I. Other carbon-containing fertilizers	Table3	CO_2	2023	NE Reporting of "NE" detected
I.2.24.	3.I. Other carbon-containing fertilizers	Table3	Total GHG emissions	2023	NE Reporting of "NE" detected
I.2.25.	4.B.1. Cropland remaining cropland	Table4	CH_4	2005	IE, NA, NE Reporting of "NE" detected
I.2.26.	4.D.2. Land converted to wetlands	Table4	N_2O	2005	IE, NA, NE, NO Reporting of "NE" detected
I.2.27.	4.E.1. Settlements remaining settlements	Table4	CH_4	2005	IE, NE Reporting of "NE" detected
I.2.28.	4.B.1. Cropland remaining cropland	Table4	CH_4	2023	IE, NA, NE Reporting of "NE" detected
I.2.29.	4.D.2. Land converted to wetlands	Table4	N_2O	2023	IE, NA, NE, NO Reporting of "NE" detected
I.2.30.	4.E.1. Settlements remaining settlements	Table4	CH_4	2023	IE, NE Reporting of "NE" detected
I.2.31.	5.B.2. Anaerobic digestion at biogas facilities	Table5	CH_4	2005	NA, NE Reporting of "NE" detected
I.2.32.	5.B.2. Anaerobic digestion at biogas facilities	Table5	N_2O	2005	NA, NE Reporting of "NE" detected
I.2.33.	5.B.2. Anaerobic digestion at biogas facilities	Table5	Total GHG emissions	2005	NA, NE Reporting of "NE" detected
I.2.34.	5.C.1. Waste incineration	Table5	CH_4	2005	NA, NE, NO Reporting of "NE" detected
I.2.35.	5.C.1. Waste incineration	Table5	N_2O	2005	NA, NE, NO Reporting of "NE" detected
I.2.36.	5.E. Other (please specify)	Table5	CO_2	2005	NE Reporting of "NE" detected
I.2.37.	5.E. Other (please specify)	Table5	CH_4	2005	NE Reporting of "NE" detected
I.2.38.	5.E. Other (please specify)	Table5	N_2O	2005	NE Reporting of "NE" detected
I.2.39.	5.E. Other (please specify)	Table5	Total GHG emissions	2005	NE Reporting of "NE" detected
I.2.40.	5.B.2. Anaerobic digestion at biogas facilities	Table5	CH_4	2023	NA, NE Reporting of "NE" detected
I.2.41.	5.B.2. Anaerobic digestion at biogas facilities	Table5	N_2O	2023	NA, NE Reporting of "NE" detected
I.2.42.	5.B.2. Anaerobic digestion at biogas facilities	Table5	Total GHG emissions	2023	NA, NE Reporting of "NE" detected
I.2.43.	5.C.1. Waste incineration	Table5	CH_4	2023	NA, NE, NO Reporting of "NE" detected
I.2.44.	5.C.1. Waste incineration	Table5	N_2O	2023	NA, NE, NO Reporting of "NE" detected
I.2.45.	5.E. Other (please specify)	Table5	CO_2	2023	NE Reporting of "NE" detected
I.2.46.	5.E. Other (please specify)	Table5	CH_4	2023	NE Reporting of "NE" detected
I.2.47.	5.E. Other (please specify)	Table5	N_2O	2023	NE Reporting of "NE" detected
I.2.48.	5.E. Other (please specify)	Table5	Total GHG emissions	2023	NE Reporting of "NE" detected
I.2.49.	Unspecified mix of HFCs and PFCs	Table10s6	_	2005	NA, NO Gas or sector not reported
I.2.50.	Unspecified mix of HFCs and PFCs	Table10s6	=	2023	NA, NO Gas or sector not reported
I.2.51.	NF ₃	Table10s6	=	2005	NA, NO Gas or sector not reported
I.2.52.	NF ₃	Table10s6	_	2023	NA, NO Gas or sector not reported
I.2.53.	6. Other	Table10s6	_	2005	NA Gas or sector not reported
I.2.54.	6. Other	Table10s6	=	2023	NA Gas or sector not reported

Table I.3 Changes in notation keys reported since the previous submission

ID#	Category	CRT	Gas	Inventory year	Notation key reported in latest submission (2025)	Notation key reported in previous submission (2024)
I.3.1.	1.B.1.b. Fuel transformation	Table1	CO_2	2005	IE, NA, NO	IE, NO
I.3.2.	1.B.1.b. Fuel transformation	Table1	CH ₄	2005	IE, NA, NE, NO	IE, NO
I.3.3.	1.B.1.b. Fuel transformation	Table1	Total GHG emissions	2005	IE, NA, NE, NO	NO
I.3.4.	1.B.2.b. Natural gas	Table1	N_2O	2005	-	0.00
I.3.5.	1.D.2. Multilateral operations	Table1	Total GHG emissions	2005	NE	NO
I.3.6.	1.B.1.b. Fuel transformation	Table1	CO_2	2022	IE, NA, NO	IE, NO
I.3.7.	1.B.1.b. Fuel transformation	Table1	CH ₄	2022	IE, NA, NE, NO	IE, NO
I.3.8.	1.B.1.b. Fuel transformation	Table1	Total GHG emissions	2022	IE, NA, NE, NO	NO
I.3.9.	1.B.2.b. Natural gas	Table1	N_2O	2022	_	0.00
I.3.10.	1.D.2. Multilateral operations	Table1	Total GHG emissions	2022	NE	NO
I.3.11.	2.B.5. Carbide production	Table2(I)	CO_2	2005	IE, NO	IE
I.3.12.	2.B.5. Carbide production	Table2(I)	Total GHG emissions	2005	IE, NO	NO
I.3.13.	2.B.7. Soda ash production	Table2(I)	Total GHG emissions	2005	IE	NO
I.3.14.	2.C.1. Iron and steel production	Table2(I)	N_2O	2005	_	IE
I.3.15.	2.C.1. Iron and steel production	Table2(I)	Total GHG emissions	2005	IE	NO
I.3.16.	2.C.2. Ferroalloys production	Table2(I)	N_2O	2005	_	IE
I.3.17.	2.C.2. Ferroalloys production	Table2(I)	Total GHG emissions	2005	IE	NO
I.3.18.	2.C.5. Lead production	Table2(I)	Total GHG emissions	2005	IE	NO
I.3.19.	2.D.2. Paraffin wax use	Table2(I)	Total GHG emissions	2005	NA, NE	NO
I.3.20.	2.D.3. Other	Table2(I)	CO_2	2005	NA, NE, NO	NO
I.3.21.	2.D.3. Other	Table2(I)	Total GHG emissions	2005	NA, NE, NO	NO
I.3.22.	2.G.3. N ₂ O from product uses	Table2(I)	N_2O	2005	IE, NA	IE
I.3.23.	2.G.3. N ₂ O from product uses	Table2(I)	Total GHG emissions	2005	IE, NA	NO
I.3.24.	2.B.5. Carbide production	Table2(I)	CO_2	2022	IE, NO	IE
I.3.25.	2.B.5. Carbide production	Table2(I)	Total GHG emissions	2022	IE, NO	NO
I.3.26.	2.B.7. Soda ash production	Table2(I)	Total GHG emissions	2022	IE	NO
I.3.27.	2.C.1. Iron and steel production	Table2(I)	N_2O	2022	_	IE
I.3.28.	2.C.1. Iron and steel production	Table2(I)	Total GHG emissions	2022	IE	NO
I.3.29.	2.C.2. Ferroalloys production	Table2(I)	N_2O	2022	_	IE
I.3.30.	2.C.2. Ferroalloys production	Table2(I)	Total GHG emissions	2022	IE	NO
I.3.31.	2.C.5. Lead production	Table2(I)	Total GHG emissions	2022	IE	NO
I.3.32.	2.D.2. Paraffin wax use	Table2(I)	Total GHG emissions	2022	NA, NE	NO
I.3.33.	2.D.3. Other	Table2(I)	CO_2	2022	NA, NE, NO	NO
I.3.34.	2.D.3. Other	Table2(I)	Total GHG emissions	2022	NA, NE, NO	NO

				Inventory		Notation key reported in previous
ID#	Category	CRT	Gas	year	submission (2025)	submission (2024)
I.3.35.	2.G.3. N ₂ O from product uses	Table2(I)	N_2O	2022	IE, NA	IE
I.3.36.	2.G.3. N ₂ O from product uses	Table2(I)	Total GHG emissions	2022	IE, NA	NO
I.3.37.	2.C.3. Aluminium production	Table2(II)	Unspecified mix of HFCs and PFCs	2005	_	NO
I.3.38.	2.F.1. Refrigeration and air conditioning	Table2(II)	HFC-23	2005	IE, NO	NO
I.3.39.	2.F.1. Refrigeration and air conditioning	Table2(II)	HFC-43-10mee	2005	IE, NO	NO
I.3.40.	2.F.2. Foam blowing agents	Table2(II)	HFC-23	2005	IE, NO	NO
I.3.41.	2.F.2. Foam blowing agents	Table2(II)	HFC-43-10mee	2005	IE, NO	NO
I.3.42.	2.C.3. Aluminium production	Table2(II)	Unspecified mix of HFCs and PFCs	2022	-	NO
I.3.43.	2.F.1. Refrigeration and air conditioning	Table2(II)	HFC-43-10mee	2022	IE, NO	NO
I.3.44.	2.F.2. Foam blowing agents	Table2(II)	HFC-43-10mee	2022	IE, NO	NO
I.3.45.	4.B.1. Cropland remaining cropland	Table4	CH ₄	2005	IE, NA, NE	IE
I.3.46.	4.B.1. Cropland remaining cropland	Table4	N_2O	2005	IE, NA	IE
I.3.47.	4.D.2. Land converted to wetlands	Table4	N_2O	2005	IE, NA, NE, NO	NO
I.3.48.	4.E.1. Settlements remaining settlements	Table4	CH ₄	2005	IE, NE	IE
I.3.49.	4.B.1. Cropland remaining cropland	Table4	CH ₄	2022	IE, NA, NE	IE
I.3.50.	4.B.1. Cropland remaining cropland	Table4	N_2O	2022	IE, NA	IE
I.3.51.	4.D.2. Land converted to wetlands	Table4	N_2O	2022	IE, NA, NE, NO	NO
I.3.52.	4.E.1. Settlements remaining settlements	Table4	CH ₄	2022	IE, NE	IE
I.3.53.	5.B.2. Anaerobic digestion at biogas facilities	Table5	CH ₄	2005	NA, NE	NO, NE
I.3.54.	5.B.2. Anaerobic digestion at biogas facilities	Table5	N_2O	2005	NA, NE	NO, NE
I.3.55.	5.B.2. Anaerobic digestion at biogas facilities	Table5	Total GHG emissions	2005	NA, NE	NO
I.3.56.	5.C.1. Waste incineration	Table5	CH ₄	2005	NA, NE, NO	NO, NE
I.3.57.	5.C.1. Waste incineration	Table5	N_2O	2005	NA, NE, NO	NO, NE
I.3.58.	5.B.2. Anaerobic digestion at biogas facilities	Table5	CH ₄	2022	NA, NE	NO, NE
I.3.59.	5.B.2. Anaerobic digestion at biogas facilities	Table5	N_2O	2022	NA, NE	NO, NE
I.3.60.	5.B.2. Anaerobic digestion at biogas facilities	Table5	Total GHG emissions	2022	NA, NE	NO
I.3.61.	5.C.1. Waste incineration	Table5	CH ₄	2022	NA, NE, NO	NO, NE
I.3.62.	5.C.1. Waste incineration	Table5	N_2O	2022	NA, NE, NO	NO, NE

Table I.4

Differences between the sectoral and reference approaches for the latest reported year

				Difference between
				reference and sectoral
ID#	CRT table	Fuel type	Description	approaches (%)
No fir	dings for this a	rea		

Table I.5 **Findings on time-series consistency**

									Difference	Difference	
ID#	Category	CRT	Gas	Year 1	Year 2	Value 1	Value 2	Difference Unit	$(CO_2 eq)$	(%)	Z-score
I.5.1.	1.A.2.a. Iron and steel	Table1	CO ₂	2008	2009	2 807.36	2 005.47	-801.89 kt	-801.89	-28.6	-3.5
I.5.2.	1.A.2.b. Non-ferrous metals	Table1	CO_2	2014	2015	15 076.91	12 700.08	−2 376.84 kt	-2376.84	-15.8	-3.4
I.5.3.	1.A.2.d. Pulp, paper and print	Table1	CO_2	2012	2013	1 018.41	1 427.93	409.52 kt	409.52	40.2	3.3
I.5.4.	1.A.2.e. Food processing, beverages and tobacco	Table1	CO_2	2002	2003	2 489.60	3 258.23	768.63 kt	768.63	30.9	3.6
I.5.5.	1.A.2.f. Non-metallic minerals	Table1	CO_2	2002	2003	5 478.05	6 457.76	979.70 kt	979.70	17.9	3.1
I.5.6.	1.A.2.g. Other	Table1	CO_2	2002	2003	7 688.83	6 276.16	−1 412.68 kt	-1412.68	-18.4	-3.1
I.5.7.	1.A.3.a. Domestic aviation	Table1	CO_2	2022	2023	5 769.95	9 006.18	3 236.23 kt	3 236.23	56.1	3.5
I.5.8.	1.A.3.b. Road transportation	Table1	CO_2	2019	2020	83 725.27	78 697.15	−5 028.13 kt	-5 028.13	-6.0	-3.9
I.5.9.	1.A.3.c. Railways	Table1	CO_2	2007	2008	1 933.63	2 312.32	378.69 kt	378.69	19.6	3.1
I.5.10.	1.A.4.b. Residential	Table1	CO_2	2022	2023	9 590.48	8 732.44	-858.04 kt	-858.04	-8.9	-3.4
I.5.11.	1.A.4.b. Residential	Table1	CH ₄	2001	2002	67.18	54.68	-12.50 kt	-350.06	-18.6	-3.6
I.5.12.	1.A.4.c. Agriculture/forestry/fishing	Table1	CO_2	2020	2021	5 583.97	7 707.85	2 123.88 kt	2 123.88	38.0	3.7
I.5.13.	1.A.5.b. Mobile	Table1	CO_2	2022	2023	721.89	1 048.87	326.98 kt	326.98	45.3	3.0
I.5.14.	1.D.1.a. Aviation	Table1	CO_2	2020	2021	11 757.88	3 840.56	−7 917.33 kt	-7 917.33	-67.3	-4.4
I.5.15.	1.D.3. CO ₂ emissions from biomass	Table1	CO_2	2008	2009	19 671.55	14 682.81	–4 988.74 kt	-4 988.74	-25.4	-3.5
I.5.16.	2.A.1. Cement production	Table2(I)	CO_2	1993	1994	3 004.70	3 484.28	479.58 kt	479.58	16.0	3.0
I.5.17.	2.B.2. Nitric acid production	Table2(I)	N_2O	2012	2013	8.08	4.93	-3.15 kt	-833.69	-38.9	-3.5
I.5.18.	2.C.3. Aluminium production	Table2(I)	CO_2	2012	2013	3 193.62	2 787.01	–406.61 kt	-406.61	-12.7	-3.2
I.5.19.	2.F.1. Refrigeration and air conditioning	Table2(II)	HFC-125	2004	2005	361.69	237.47	-124.22 t	-393.77	-34.3	-3.5
I.5.20.	2.F.1. Refrigeration and air conditioning	Table2(II)	HFC-143a	2004	2005	34.62	254.39	219.77 t	1 054.89	634.8	4.4
I.5.21.	3.G. Liming	Table3	CO_2	2013	2014	760.32	1 138.74	378.43 kt	378.43	49.8	3.2
I.5.22.	4.B.2. Land converted to cropland	Table4	Net CO ₂	2012	2013	-1826.84	6 517.00	8 343.84 kt CO ₂ eq	8 343.84	-456.7	3.3
			emissions/removals								
I.5.23.	4.B.2. Land converted to cropland	Table4	CH ₄	1991	1992	21.17	10.10	-11.07 kt	-309.93	-52.3	-5.2
I.5.24.	4.C.2. Land converted to grassland	Table4	CH ₄	1991	1992	183.08	132.48	−50.61 kt	-1417.03	-27.6	-3.3
I.5.25.	4.D.2. Land converted to wetlands	Table4	CH ₄	1991	1992	42.40	26.29	−16.11 kt	-450.96	-38.0	-4.3
I.5.26.	5.D.1. Domestic wastewater	Table5	CH_4	1999	2000	68.85	55.59	−13.26 kt	-371.35	-19.3	-3.3
I.5.27.	5.D.2. Industrial wastewater	Table5	CH ₄	2002	2003	110.24	54.38	–55.86 kt	-1 563.97	-50.7	-5.1

FCCC/ETF/SRR/2025/AUS

Table I.6

Comparison between implied emission factors reported for key categories and the range of implied emission factors from the 2025 national inventory reports of developed country Parties

ID#	Category	CRT	Gas	Unit	IEF reported Comparison
I.6.1.	1.A.1. Energy industries – gaseous fuels	Table1.A(a)s1	CO ₂	t/TJ	50.864 Below range
I.6.2.	1.A.2. Manufacturing industries and construction – gaseous fuels	Table1.A(a)s2	CO_2	t/TJ	51.151 Below range
I.6.3.	1.A.3.c. Railways – liquid fuels	Table1.A(a)s3	CO_2	t/TJ	69.900 Below range
I.6.4.	1.A.4. Other sectors – gaseous fuels	Table1.A(a)s4	CO_2	t/TJ	51.414 Below range
I.6.5.	1.A.4. Other sectors – biomass	Table1.A(a)s4	CH ₄	kg/TJ	698.297 Above range
I.6.6.	1.B.1.a.i.2. Post-mining activities	Table1.B.1	CH ₄	kg/TJ	0.384 Below range
I.6.7.	3.A.1. Cattle	Table3.A	CH ₄	kg CH ₄ /head/year	53.066 Below range
I.6.8.	3.A.1.a. Other	Table3.A	CH ₄	kg CH ₄ /head/year	53.066 Below range
I.6.9.	3.A.4.a. Buffalo	Table3.A	CH ₄	kg CH ₄ /head/year	76.000 Above range
I.6.10.	3.B.3. Swine	Table3.B(a)	CH ₄	kg CH ₄ /head/year	23.245 Above range
I.6.11.	3.B.3.a. Other (please specify)	Table3.B(a)	CH ₄	kg CH ₄ /head/year	23.245 Above range
I.6.12.	3.B.3.a. Other (please specify) – swine	Table3.B(a)	CH ₄	kg CH ₄ /head/year	23.245 Above range
I.6.13.	3.B.4.b. Camels	Table3.B(a)	CH ₄	kg CH ₄ /head/year	10.071 Above range

Table I.7 **Identification of new key categories**

				Inventory
ID#	New key category	Gas	Criteria	year
I.7.1.	2.C.7. Other	CO_2	Level	2023
I.7.2.	2.C.7. Other	CO_2	Trend	2023
I.7.3.	4.D.2. Land converted to wetlands	CO_2	Level	2023